
LECTURE NOTES: 4-2 THE MEAN VALUE THEOREM
(PART 2)

WARM-UP PROBLEMS:

1. State Rolle’s Theorem and draw a picture illustrating it.

2. State the Mean Value Theorem and draw a picture illustrating it.

3. Johnny Fever says “Rolle’s Theorem? We don’t need no stinking Rolle’s Theorem. It’s just a special
case of the Mean Value Theorem.” Is he right? Explain.
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4. Consider f(x) = 1/x on the interval [1, 3].

(a) Verify that the function f(x) satisfies the hypothesis of the Mean Value Theorem on the given
interval.

(b) Find all numbers c that satisfy the conclusion of the Mean Value Theorem.

(c) Sketch the graph to show that your answer above are correct.

5. Construct an example of a specific function f(x) and interval [a, b] such that there are exactly three
numbers c in (a, b) satisfying the Mean Value Theorem.

6. Fill in the blank below and draw a picture illustrating this theorem.

If f 0(x) = 0 for all x in the interval (a, b), then .
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ONE LAST BIG IDEA:

1. Give the formulas for two different functions f(x) and g(x) such that f 0(x) = g

0(x) and sketch these
two functions on the same set of axes.

2. Corollary 7: If f 0(x) = g

0(x) for all x in the interval (a, b), then

or, said another way,

.

3. Why is Corollary 2 true?
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PRACTICE PROBLEMS:

1. Suppose f is continuous on [2, 5] and 1  f

0(x)  4 for all x in (2, 5). Show that 3  f(5)� f(2) 
12.

2. Suppose that f(0) = �3 and f

0(x)  5 for all values of x. How large can f(2) possibly be?
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3. For each function below, show that there is no value of c on [0, 2] such that f 0(c) =
f(2)� f(0)

2� 0
.

Why does this not contradict Rolle’s Theorem?

a) f(x) = |x� 1| b) f(x) =
1

(x� 1)2

4. Two stationary patrol cars equipped with radar are 5 miles apart on a highway. As a truck passes
the first patrol car, its speed is clocked at 55 miles per hour. Four minutes later, when the truck
passes the second patrol car, its speed is clocked at 50 miles per hour. Prove that the truck must
have exceeded the speed limit of 55 miles per hour at some time during the four minutes.
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